
Econometric Issues in empirical research
Empirical research requires us to creatively blend
substantive and technical issues.

 The first requirement is to pose an interesting question. The
best questions have us learn something regardless of the
answer the data gives us. Questions with no answers (or all
you can say is "the data are uninformative") are best avoided.

 Finding data is a key and underappreciated skill. Good
research requires good data. In economics/finance, we rarely
get to generate original data. It usual comes from official
sources, or as a by-product of some private activity.
Interesting data are often the seminal impetus for good
research questions.



 There’s no textbook on how to pose good questions, find
good data, or "be creative". But I can provide a checklist of
econometric issues that you should keep in mind.

1. Specification of the regression function
 Do the data have special features that you can exploit?

 Restrictions on supp[y]: positive, dummy, count,
truncated, censored. If so, is a regression model
appropriate?

 Time series, panel data, or multivariate y? If so, then
there are potentially important possibilities to add
variables to the regression function to eliminate LOV
bias.



Suppose a regression model is appropriate
y  X  u

 Are you interested in the coefficient of the BLP or some
other parameter?
 Are there important left out variables? Do you have

measurement error? Is there simultaneity bias?
 Are there important nonlinearities?
 Is there heterogeneity in the coefficient vector?
 Are there dynamics?
 What are the error properties?

 heteroskedasticity, serial correlation, cluster effects
(system of equations, panel data, etc.)

 specification tests
 FGLS, HAC inference



2. Evaluation of the model

 Hypothesis tests. Should the model be simplified?

 Interpretation of the coefficients?

 How would you use the model?
 Data summary
 Prediction
 Recommended action

So far, we’ve proceeded as if we are interested in  from
the BLP. But it’s not the only choice!



Ch 15. IV and 2SLS
 Consider the model

yi  xi  ui

where Exi
′ui ≠ 0

 Why would we get Exi
′ui ≠ 0?

1. LOV
2. measurement error
3. predetermined regressors and persistent errors
4. simultaneity bias



Suppose we can find variables zi ∈ p such that
i) Ezi

′ui  0
ii) Ezi

′xi has full rank K ( p ≥ K

 zi may contain some of the variables in xi as well as other
variables not in xi.

 We call the variables zi satisfying (i) and (ii) instruments.
We often say valid instruments to emphasize that they have
these properties, rather than they are only claimed to do so

 In Finance, instruments is used to describe regressors,
proxies, objects in the information set,....

 We can use Method of Moments and properties (i) and (ii) to
generate the Instrumental Variables (IV) estimator. OLS is a
special case.



Given the model
y  X  u

the IV estimator solves the moment (normal) equations
∗ Z ′y − X


IV  0

 Why would this give a consistent estimator of the parameter
of interest? Premultiply both sides of the model by n−1Z ′

1
n Z ′y  1

n Z ′X  1
n Z ′u

But Ezi
′ui  0. So if we can invoke a LLN, the last term

goes to zero in probability. So the coefficient vector  of
interest will satisfy the IV moment equations asymptotically.
And as long as 1

n Z ′X stays nonsingular, there will be a
unique solution to the moment equations.



Solution of IV moment equations
Case 1. If p  K, then w.p.1, Z ′X is nonsingular by (ii) and


IV  Z ′X−1Z ′y

Case 2. If p ≥ K, then w.p.1 we can find a matrix Q ∈ RKxp

such that Q ′Z ′X is nonsingular and (premultiplying ∗ by Q ′)

IV  Q ′Z ′X−1Q ′Z ′y

 Write W  ZQ. The formula above is just

IV  W ′X−1W ′y

Some call W the instruments and Z the IV candidates. If
p  K, then Q must be nonsingular and the formula reduces
to Case 1.

In what follows, I’ll assume Case 1, unless stated
otherwise. The extension to Case 2 is straightforward.



Geometry of IV estimator

 Let y IV  X

IV denote the fitted value from the IV

estimation. By construction, y IV ∈ SpX, and
y IV  X


IV  XZ ′X−1Z ′y ≡ PIVy

 Notice that PIV is idempotent
PIV

2  XZ ′X−1Z ′XZ ′X−1Z ′

 XZ ′X−1Z ′  PIV

so y IV is a projection onto SpX
 But PIV is not symmetric, so the projection is not orthogonal
 R2 makes no sense with IV estimation



Consistency of the IV estimator

IV  Z ′X−1Z ′y

   Z ′X−1Z ′u

    1
n ∑

i1

n
zi
′xi−1 1

n ∑
i1

n
zi
′ui

 By property (i) above and LLN, we have plim 1
n ∑

i1

n
zi
′ui  0

 By property (ii) and LLN, we have plim 1
n ∑

i1

n
zi
′xi is

nonsingular

Therefore plim

IV  



Asymptotic Normality of IV Estimator

As with OLS, we must use a CLT to show
1
n
∑
i1

n
zi
′ui~aN0,Vn

where Vn is an appropriately chosen matrix (with my abuse
of notation, it could even be random)
 If Eui

2|z1, z2,  2, then we obtain

IV~aN,2Z ′X−1Z ′ZX ′Z−1  N,2X ′PzX−1

If K  1,2X ′PzX−1  2X ′X−1/R0,X,Z
2

 If Eui
2|z1, z2,   i

2, and  ≡ diag i
2, then we obtain


IV~aN,2Z ′X−1Z ′ZX ′Z−1

 What happens if there is serial correlation?



Examples

 In general, finding valid instruments is HARD because we
need to satisfy both (i) and (ii). Satisfying either is easy, but
not both.

 Consider a wage regression
lnwage  0  1educ  u u  2ability  e

 We have 2 parameters and need 2 instruments. The choice
z1i  1 is easy. But what could we pick for z2i? We need a
variable that is correlated with educ but uncorrelated with
ability or anything that contributes to the unobserved
disturbance e



 Candidates for z2:

 random numbers
 satisfies (i) but not (ii)!

 proxy variables for ability (eg. IQ)
 satisfies (ii) but not (i)!

 Mother’s education
 correlated with educ, is it correlated with ability?

 number of siblings?
 month of birth?
 distance to nearest university?



 Assumption (ii), Ezi
′xi has full column rank, is testable.

And it should be tested!

 Assumption (i), Ezi
′ui  0 is an identifying assumption. It

can’t be tested. You have to use extraneous knowledge
(theory or natural experiment) to justify it.

 In Case II, p  K, we have more instruments than we "need".
We can test if all p instruments are valid while maintaining
that W  ZQ are valid instruments (Sargan-Hansen test).
The idea is to see if IV residuals are orthogonal to Z (taking
into account that they will be orthogonal to W by
construction)

 If we can find enough valid instruments, we can also test if
OLS is valid (Hausman-Wu test)



Properties of IV with poor instruments
For the simple regression model

y  0  1x  u

 The IV estimator satisfies

plim

1,IV  1 

covz ′u
covz ′x

 1 
corrz ′u
corrz ′x

u
x

 The OLS estimator goes to
plim


1  corrx ′u u

x

 So if corrz ′x is small, the inconsistency using OLS may be
smaller even though 0 ≠ corrz ′u  corrx ′u

 Poor instruments also generate very large standard errors. In
limit, as corrz ′x ↓ 0, standard asymptotic theory provides a
very poor approximation even with HUGE sample size



2SLS (Two-stage least squares)
Suppose we have p  K. For each Q


IV~aN, Q ′Z ′X−1Q ′Z ′ZQX ′ZQ−1

 Assume   2I; to minimize the variance of the asymptotic
distribution (avar), choose

Q  Z ′Z−1Z ′X
the resulting estimator is called the 2SLS estimator

Proof: If Q  Z ′Z−1Z ′X, the formula for the avar simplifies
to

Q ′Z ′X−1Q ′Z ′ZQX ′ZQ−1  X ′PZX−1

So we need to show (using ≥ 0 to denote a nonnegative
definite matrix)



Q ′Z ′X−1Q ′Z ′ZQX ′ZQ−1 − X ′PZX−1 ≥ 0

But we know that A−1 − B−1 ≥ 0 iff B − A ≥ 0. So the
equation above is equivalent to

X ′PZX − X ′ZQQ ′Z ′ZQ−1Q ′Z ′X ≥ 0

which can be rewritten as
X ′PZ − PZQX ≥ 0

So the result follows immediately from SpZQ ⊂ SpZ



 Define X  ZZ ′Z−1Z ′X  PZX.
 The 2SLS estimator can be written in as


2SLS  X

′
X−1X

′
y

 X
′
X−1X

′
y

 X ′PZX−1X ′PZy
~aN,2X ′PZX−1

(1) More instruments reduce X ′PZX−1

(2) Can’t use R2 or SSR to test H0 : R  r, but Wald test
still works.



A related approach to combining instruments optimally
when p  K uses a nonsingular matrix V ∈ pxp to weight
the p moments in ∗

min

y − X ′ZVZ ′y − X

The first-order conditions
X ′ZVZ ′y − X


IV,V  0

The problem then is to choose the weighting matrix V to
minimize that avar of the resulting estimator.
Compared to our approach of choosing Q, this appears to
restrict attention to matrices of the from Q ′  X ′ZV. But the
restriction is not costly as this alternative approach yields
the same optimal estimator with V  Z ′Z−1



Testing for Endogeneity (Hausman-Wu)
 Suppose we have the model

y1  y21  Z12  u ≡ X  u
Where we believe EZ1

′ u  0 but we suspect Ey2
′ u ≠ 0

 Posit (using obvious notation if y2 has many columns)
y2  Z11  Z22  v ≡ Z  v

 Let v  MZy2. Run the regression
∗ y1  y21  Z12 

v  u
and test H0 :   0 to decide if Ey2

′ u  0. Why?
∗ y1  PZy21  Z12 

v1    u
A test of   0  test that OLS2SLS.

 By construction, ∗ gives 2SLS estimates.



Testing Overidentification (Sargan-Hansen)
 If p  K we could use any K independent linear

combinations of the instrumental variable candidates to
estimate .

 Suppose we have homoskedastic errors. Then 2SLS gives
the K lin. comb. with the smallest covariance matrix. We can
test if the remaining linear combinations are orthogonal to
the disturbance.

 Construct the 2SLS residuals u 2SLS
 Regress u 2SLS on the IV candidates Z. Under

H0 : Ezi
′ui  0, we have nR2~a2p − K

 According to the usual first-order theory, adding valid
instruments can’t hurt and usually helps. But in small
samples, significant bias obtains if we have too many
instruments. In the limit, if p  n then


IV 


!



2SLS with heteroskedasticity

 We can use the Breusch-Pagan test with u 2SLS in place of u.
 If we know the form of the heteroskedasticity, we can weight

the observations to gain efficiency.
 We can get heteroskedasticity robust standard errors using a

direct analog of the White covariance matrix estimator:

n Z ′X

IV −  

1
n
∑
i1

n
zi
′ui~aN0,Vn

estimate Vn consistently with Vn  1
n ∑

i1

n ui,2SLS
2 zi

′zi

and with usual abuse of notation, we get

IV~aN,nZ ′X−1VnX ′Z−1



2SLS with time series

 Unit roots and near unit roots raise the same issues for IV
estimation as we discussed for OLS. Consider adding trends
(seasonals) to the regression; first differencing data, etc.

 The Breusch-Pagan test extends in the obvious way:
1. Estimate yt  xt  ut by 2SLS (instruments zt)
2. Estimate yt  xt  1

ut−1,2SLS p
ut−p,2SLS  et

(using the same instruments zt as in step 1., but
adding the lagged IV residuals to the instrument
set)

3. Use an F-test (or HC analog) to test the null
hypothesis 1    p  0



 If we find serial correlation

1. We can compute the analog to the N-W HAC

2. We can add lags to get a DC model

3. We can attempt FGLS by quasi-differencing and
then estimating the model

y t 
x t 

ut
y t  Lyt, etc

But this raises the question: Which instruments to
use? It’s natural to try z t  Lzt but this raises
the issue that unless the regressors are strictly
exogenous, Ezt

′ut  0  Ez t
′ut  0


